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Abstract
An exactly solvable one-dimensional ferrimagnetic quantum spin chain model
with alternating 1/2-spins and 1-spins is proposed and solved via algebraic
Bethe ansatz. It is found that the ground state of this model is a ferrimagnetic
state with a residual magnetization. It is proven that the low-lying elementary
excitations of the system are the varieties of gapless spinons rather than spin
waves.

PACS numbers: 02.30.Ik, 75.10.Jm, 05.50.+q

1. Introduction

The one-dimensional (1D) quantum models have many applications in the fields of quantum
magnetism, strongly correlated electron systems and trapped cold atoms. Besides some quasi-
1D materials, more and more artificial 1D systems have been realized in experiments by means
of the modern micro-fabrication techniques or magnetic and laser traps. The 1D quantum
systems usually exhibit unique properties compared to their counterparts in high dimensions.
For instance, for the gapless 1D systems, the low-energy physics can be described by the
so-called Luttinger liquid [1] and the elementary excitations usually carry fractional charges.
For the quantum spin chains with integer spins, Haldane conjectured that there is a finite gap
in the energy spectrum [2]. Interestingly, some 1D quantum models can be solved exactly,
which provided us with a deep understanding of the 1D quantum systems. Typical integrable
quantum spin chains are the spin-1/2 Heisenberg model [3], SU(N)-invariant high-spin chain
[4–6] and the SU(2)-invariant high-spin chains [7–10].

Besides the homogeneous spin chains, there also exist some alternating spin systems. In
experiments, the 1D alternating spin systems are realized in some bimetallic chain compounds
such as ACu(pba)(H2O)3· nH2O and ACu(pbaOH)(H2O)3· nH2O, where A=Mn, Fe, Co, Ni,
Zn, pba=1, 3-propylenebis (oxamato), and pbaOH=2-hydroxy-1, 3-propylenebis (oxamato)
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[11, 12]. Motivated by the progress in experiments, the theoretical studies of ferrimagnetic
spin chains are carried out extensively. For instance, Kolezhuk et al studied the ground
state of the Heisenberg spin chain with alternating spin-1 and spin-1/2 and antiferromagnetic
exchange interactions between nearest neighbors by constructing the matrix-product states
[13]. Wu et al studied the ground-state properties of the quantum ferrimagnetic spin chain
and found that the ground state of the system has the ferrimagnetic long-range order [14].
The low-temperature properties of the alternating spin chain with antiferromagnetic nearest
neighbor exchange couplings are studied by Brehmer et al [15]. Pati et al investigated the
low-lying excited states with a renormalization group method [16, 17]. Yamamoto et al
study the elementary excitations, specific heat and magnetic properties of the alternating
spin system with nearest neighbor interactions by using the density-matrix renormalization
group technique as well as the quantum Monte Carlo simulation [18–20]. It is also
found that the specific heat of low-dimensional quantum ferrimagnets has the double-peak
structure [21]. Recently, in an interesting work, Mohakud et al study the ground-state
properties and low-lying excitations of an alternating spin-1 and spin-1/2 model with nearest
antiferromagnetic coupling and next nearest neighbor ferromagnetic coupling via the spin wave
theory, density matrix renormalization group and numerical exact diagonalization methods
[22].

Unfortunately, the ferrimagnetic spin chain with nearest neighbor interactions cannot be
solved exactly. However, by adding some additive terms such as the multi-spin interactions,
de Vega and Woynarovich constructed an integrable model with alternating 1/2 and 1 spins
[23]. By using the Bethe ansatz method, they demonstrated that the ground state of their
model is a spin singlet [24]. Fujii et al studied the magnetic and critical properties of this
integrable system in magnetic fields [25]. Doikou studied the de Vega–Woynarovich model in
the presence of a quantum impurity and solved the system with both diagonal and non-diagonal
integrable open boundary conditions [26]. The anisotropic case of the de Vega–Woynarovich
model is studied by Dörfel and Meißner, who obtained the ground state, the low excitations and
the conformal invariance of the system [27, 28]. Bytsko and Doikou generalized the de Vega–
Woynarovich model and studied the ground state, thermodynamics and conformal properties
of anisotropic XXZ spin chains with alternating spins 1/2 and S via the algebraic Bethe
ansatz method [29]. Very recently, Ribeiro and Klümper constructed a general integrable
quantum spin chains with alternating spins S1 and S2 [30]. Another integrable spin-1 and
spin-1/2 mixed model is proposed by Aladim and Martins [31]. Later, it is shown that
the spin-1 operators can be generalized to the arbitrary case while the integrability is kept
[32]. Other interesting topics on the integrable alternating spin systems can be found in
some other works [33, 34]. In the exactly solvable ferrimagnetic quantum spin chains, the
basic terms are the couplings between the spin-1/2 and the spin-1. The integrability of the
systems requires that the Hamiltonian must have some attached terms. The attached terms
of the above-mentioned integrable ferrimagnetic systems are different due to the different
constructions.

In this paper, we propose an integrable ferrimagnetic spin chain model with alternating
1/2 and 1 spins. The model is solved via the algebraic Bethe ansatz [35]. Based on the
exact solutions, we found that the ground state is a ferrimagnetic state with a finite residual
magnetization and the low-lying elementary excitations of the system are spinons as those in
the spin-1/2 Heisenberg spin chain.

The paper is organized as follows. In section 2, we introduce the model and derive the
exact solutions. In section 3, we discuss the ground-state properties of the system. In section 4,
we study the low-lying excitations. Section 5 is attributed to the concluding remarks.
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2. The model

We consider a 1D ferrimagnetic quantum spin chain with the following model Hamiltonian:

H =
N/2∑
n=1

[
σ2n−1 · S2n + S2n · σ2n+1 − 7

8
σ2n−1 · σ2n+1

+
1

2
(σ2n−1 · S2n)(S2n · σ2n+1) +

1

2
(S2n · σ2n+1)(σ2n−1 · S2n)

]
, (1)

where σn and Sn are the Pauli matrices and the spin-1 operators at site n, respectively; the even
number N is the length of the chain. Here the periodic boundary condition σN+1 = σ1

is assumed. The Hamiltonian contains three kinds of terms, i.e., the nearest neighbor
antiferromagnetic coupling between the Pauli spins and the 1 spins, the next nearest neighbor
ferromagnetic coupling between Pauli spins and a three-spin coupling term to ensure the
integrability of the model. The four-spin couplings come from the spin–phonon interactions,
and is irrelevant to the ground state of the system [36]. The four-spin interacting terms are
relevant and may significantly affect the low-energy properties of the system. Obviously, the
Hamiltonian (1) is SU(2)-invariant.

It is well known that the integrability of the 1D lattice models is related to the transfer
matrix of the corresponding two-dimensional vertex model. In order to show the integrability
of the present system (1) clearly, we define the Lax operators

Lσ
0n = 1

λ + η
(λ + ηP σ

0n), (2)

LS
0n = 1

λ + 3
2η

(
λ +

3

2
ηP S

0n

)
, (3)

where λ is the spectral parameter, η is the crossing parameter, P σ
0n = (1 + σ0 · σn)/2 is the

spin permutation operators, 0 describes the auxiliary space and n describes the quantum (site)
space, P S

0n = (1 + 2σ0 · Sn)/3 is an auxiliary operator. The L-operators (2) and (3) are quite
different. The operator (2) acts on the space V0 ⊗ Vn, where V0 is the auxiliary space of
spin-1/2 which is a 2 × 2 matrix and Vn is the quantum space of spin-1/2 which is also a
2 × 2 matrix. If the spectrum parameter λ is zero, the L-operator (2) exactly degenerates
into the permutation operator, which permutes two 1/2 spins. Thus the L-operator (2) can be
written as a 4 × 4 matrix. The L-operator (3) is different from equation (2). The operator
(3) expresses the interactions between the spin-1/2 and spin-1. The operator (3) acts on the
space of V0 ⊗ Vm, where V0 is the auxiliary space again which is a 2 × 2 matrix and Vm is the
quantum space of spin-1 which is a 3 × 3 matrix. Thus the L-operator (3) can be written as a
6 × 6 matrix. If the spectrum parameter λ is zero, the L-operator (3) is not the permutation
operator and it does not permute the 1/2 and 1 spins. The Lax operators (2) and (3) satisfy
the Yang–Baxter relations

Lσ
00′(λ − μ)Lσ

0n(λ)Lσ
0′n(μ) = Lσ

0′n(μ)Lσ
0n(λ)Lσ

00′(λ − μ),

Lσ
00′(λ − μ)LS

0n(λ)LS
0′n(μ) = LS

0′n(μ)LS
0n(λ)Lσ

00′(λ − μ).

The monodromy matrix of the system is constructed as

T0(λ) = Lσ
01(λ)LS

02(λ)Lσ
03(λ)LS

04(λ) · · · LS
0N(λ). (4)

Note that the spin-1/2 operators and the spin-1 operators in the quantum space are arranged
alternatively, and share the same auxiliary space expanded by the Pauli matrix σ0. It is easy to
check that the monodromy matrix (4) also satisfies the following Yang-Baxter relation

Lσ
00′(λ − μ)T0(λ)T0′(μ) = T0′(μ)T0(λ)Lσ

00′(λ − μ). (5)
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Define the transfer matrix τ(λ) = tr0T0(λ). From the Yang–Baxter relation (5), we find
that the transfer matrices with different spectral parameters commute with each other, [τ(λ),

τ (μ)] = 0. Thus the system (1) has an infinite number of conserved quantities and is
integrable. The explicit expression of the Hamiltonian (1) is obtained by the derivative of
logarithm of the transfer matrix as

H = 9

4
η

∂

∂λ
ln τ(λ)

∣∣∣∣
λ=0

+
17

16
N. (6)

We use the algebraic Bethe ansatz method to diagonalize the Hamiltonian (1). For
simplicity, we write the matrix form of the monodromy matrix in the auxiliary space

T0(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
. (7)

From the Yang–Baxter relation (5) we obtain the following commutation relations

A(λ)B(μ) = λ − μ − η

λ − μ
B(μ)A(λ) +

η

λ − μ
B(λ)A(μ),

D(λ)B(μ) = λ − μ + η

λ − μ
B(μ)D(λ) − η

λ − μ
B(λ)D(μ),

B(λ)B(μ) = B(μ)B(λ).

Choosing the vacuum state of the system as the direct production of the local spin-up state
(ferromagnetic state)

|0〉 = |1/2〉1 ⊗ |1〉2 ⊗ |1/2〉3 ⊗ |1〉4 · · · ⊗ |1〉N, (8)

the monodromy matrix acting on the vacuum state gives

A(λ)|0〉 = |0〉, (9)

D(λ)|0〉 = λ
N
2
(
λ − 1

2η
) N

2

(λ + η)
N
2
(
λ + 3

2η
) N

2

|0〉, (10)

C(λ)|0〉 = 0. (11)

The element B(λ) acting on the vacuum state gives nonzero value and can be regarded as the
spin-flip operator. Assume that the eigenstates of the system take the following form

|μ1, . . . , μM〉 = B(μ1) · · · B(μM)|0〉, (12)

where M is the number of flipped spins. By acting the transfer matrix τ(λ) = A(λ) + D(λ) on
the assumed states and using the commutation relations among the elements of the monodromy
matrix, we obtain two kinds of terms. One gives the wanted terms and the other gives the
unwanted terms. If the assumed states (12) are the eigenstates of the transfer matrix, the
unwanted terms must be canceled , which gives the Bethe ansatz equations or the constraints
of the states (12). From the eigenvalues of transfer matrix and the relation between the transfer
matrix and the Hamiltonian, we obtain the eigenvalues of the system (1) as

E = 47

16
N − 9

4

M∑
j=1

1

λ2
j + 1

4

, (13)

where the parameters λj should satisfy the following Bethe ansatz equations[
(λj − i/2)(λj − i)

(λj + i/2)(λj + i)

] N
2

=
M∏

l=1,l �=j

λj − λl − i

λj − λl + i
, (14)

where j = 1, 2, . . . , M . The properties of the model (1) are uniquely determined by
equations (15) and (16).
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3. Ground state

By taking the logarithm of the Bethe ansatz equation (14), we readily arrive at

θ1(λj ) + θ2(λj ) = 2

N

M∑
l=1,l �=j

θ2(λj − λl) +
4πIj

N
, (15)

where θn(x) = 2 arctan(2x/n) and the quantum number Ij is an integer if M is odd and is
half-odd if M is even. Define

Z(λ) = 1

2π

[
θ1(λ)

2
+

θ2(λ)

2
− 1

N

M∑
l=1

θ2(λ − λl)

]
, (16)

then the Bethe ansatz equations (15) take the form of Z(λj ) = Ij /N . In the thermodynamic
limit, the number of total spins N and the number of flipped spins M tend to infinity while the
ratio M/N keeps a non-zero value. Then the quantum number Ij takes the continue values.
In the thermodynamic limit, we define the σ(λ) as the density of number of flipped spins

σ(λ) = dZ(λ)

dλ
. (17)

The σ(λ) describes the density of quasi-particles. In the ground state, the particles are
filled below the Fermi surface thus all the {Ij }s are consecutive numbers around zero. The
corresponding density of particles σ(λ) should satisfy the integral equation,

σ(λ) = 1

2
a1(λ) +

1

2
a2(λ) −

∫ 	

−	

a2(λ − λ′)σ (λ′) dλ′, (18)

where an(λ) = n/[2π(λ2 + n2/4)] and 	 is the Fermi point. Because real λ contributes
positive energy, in the ground state, 	 must tend to infinity. In this case, equation (18) can be
solved through the Fourier transformation. After some algebra, we have

σ̃ (ω) = 1

2

e− |ω|
2 + e−|ω|

1 + e−|ω| , (19)

and

σ(λ) = 1

4 cosh(πλ)
+

1

4 cosh
(
πλ − π

2

) . (20)

It is easy to show that

M

N
=

∫
σ(λ) dλ = 1

2
. (21)

The residual magnetization therefore reads Sz = 3N/4−M = N/4, indicating a ferrimagnetic
ground state. The corresponding energy density of this state is

E

N
= 47

16
− 9

2
π

∫
a1(λ)σ (λ) dλ

= −25

16
− 9

4
ln 2 +

9

4
π. (22)
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4. Elementary excitations

Now let us turn to the elementary excitations of the system. Generally, the basic excitation
energy quanta in the integrable models are described by the so-called dressed energy which in
our case reads

ε(λ) = ε0(λ) −
∫

a2(λ − μ)ε(μ) dμ, (23)

where ε0(λ) = 9πa1(λ)/2. Using the Fourier transformation, the dressed energy of quasi-
particles can be expressed as

ε(λ) = 9

8 cosh(πλ)
. (24)

When λ → ±∞, the dressed energy of quasi-particles tend to zero. Thus the elementary
excitation in the present system is gapless.

The simplest elementary excitation flips one spin from the spin configuration of the ground
state. In this excitation, one of the sequence quantum numbers {Ij } is unoccupied which is
equivalent to generating two holes in the λ-sea. Suppose the positions of the holes in the
λ-axis are λh

1 and λh
2. In this case, the distribution function σ(λ) should satisfy the integral

equation

σ(λ) + σh(λ) = a1(λ)

2
+

a2(λ)

2
−

∫
a2(λ − μ)σ(μ) dμ, (25)

where the density of holes are quantified by

σh(λ) = 1

N

[
δ
(
λ − λh

1

)
+ δ

(
λ − λh

2

)]
. (26)

Taking the Fourier transformation of equation (25), we obtain the density difference between
the excited state and the ground state as

δσ̃ (ω) = − 1

N

eiλh
1ω + eiλh

2ω

1 + e−|ω| . (27)

The energy of this kind of elementary excitation can easily be derived as

δE = −9

4
N

∫
a1(λ)δσ (λ) dλ = ε

(
λh

1

)
+ ε

(
λh

2

)
. (28)

It is just the summation of the energy of two quasi-holes. The corresponding spin of this
elementary excitation is

S = −N

∫
δσ (λ) dλ = 1, (29)

indicating a spin triplet excitation. Clearly, each hole carries spin-1/2, which is exactly the
same as the spin-on in the spin-1/2 Heisenberg chain.

In the above investigation, we only considered the real solutions of the Bethe ansatz
equation (14). In fact, the Bethe ansatz equation may have complex or string solutions with
the following form [37]

λ
(n)
j,α = λ(n)

α − i

2
(n + 1 − 2j) + o(e−δN ), (30)

where j = 1, 2, . . . , n, λ(n)
α is a real number which represents the position of the αth n-string,

δ is positive infinitesimal and the term o(e−δN ) means the finite size correction which can be
neglected in the thermodynamic limit. The string solutions correspond to the bound states.
In the thermodynamic limit, the strings are symmetrically aligned in the two sides of the

6
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real axis with the same distance. Substituting the string solutions (30) into the Bethe ansatz
equation (14), we have

n∏
j=1

((
λ

(n)
j,α − i/2

)(
λ

(n)
j,α − i

)(
λ

(n)
j,α + i/2

)(
λ

(n)
j,α + i

) ) N
2

=
n∏

j=1

∞∏
m=1

∞∏
l=1,l �=j

m∏
β=1

λ
(n)
j,α − λ

(m)
l,β − i

λ
(n)
j,α − λ

(m)
l,β + i

. (31)

Taking the logarithm of equation (31), we obtain

θn

(
λ(n)

α

)
+ θ2n

(
λ(n)

α

) = 4πI (n)
α

N
+

2

N

∑
m,β

θ ′
mn

(
λ(n)

α − λ
(m)
β

)
, (32)

where θ ′
mn(λ) = θm+n(λ) + 2θm+n−2(λ) + · · · + 2θ|m−n|+2(λ) + (1 − δmn)θ|m−n|(λ). Define

Zn(λ) = θn(λ)

4π
+

θ2n(λ)

4π
− 1

2πN

∑
j,β

θ ′
m,n(λ − λ

(m)
β ).

In the thermodynamic limit, we denote dZn(λ)/dλ ≡ σn(λ)+σh
n (λ), where σn(λ) is the density

of n-string in λ-space, and σh
n (λ) is the density of holes. Taking the derivative of equation (32),

we obtain that the densities σn(λ) and σh
n (λ) should satisfy

σn(λ) + σh
n (λ) = an(λ)

2
+

a2n(λ)

2
−

∞∑
m=1

∫
Amn(λ − μ)σm(μ) dμ, (33)

where Amn(λ) = am+n(λ) + 2am+n−2(λ) + · · · + 2a|m−n|+2(λ) + a|m−n|(λ) and a0(λ) ≡ δ(λ).
Starting from equation (33), we can discuss the general elementary excitations and the
thermodynamic properties of the system.

We consider the 2-string excitation by digging two holes in the real axis at the positions
λh

1 and λh
2 and putting a 2-string λs ± i/2 in the λ-sea. Again, the density of holes σh

1 (λ) and
the density of 2-string σ2(λ) are quantified by the δ-functions as

σh
1 (λ) = 1

N

[
δ
(
λ − λh

1

)
+ δ

(
λ − λh

2

)]
, (34)

σ2(λ) = 1

N
δ(λ − λs). (35)

The distribution functions of real λ should satisfy the integral equation

σ1(λ) + σh
1 (λ) = a1(λ)

2
+

a2(λ)

2
−

∫
a2(λ − μ)σ1(μ) dμ

−
∫

[a1(λ − μ) + a3(λ − μ)]σ2(μ) dμ. (36)

Substituting equations (34) and (35) into (36) and using the Fourier transformation, we obtain
the change of the density of real λ respect to that of the ground state as

δσ̃1(ω) = − eiλh
1ω + eiλh

2ω

N(1 + e−|ω|)
− e− 1

2 |ω| + e− 3
2 |ω|

N(1 + e−|ω|)
eiλsw. (37)

The corresponding excitation energy therefore reads

δE = −9πN

2

[∫
a1(λ)δσ1(λ) dλ +

1

N
a2(λs)

]
= ε

(
λh

1

)
+ ε

(
λh

2

)
. (38)

We find that the excitation energy is the same in form as that of the spin triplet excitation. The
excitation energy only depends on the positions of the holes. The contribution of the 2-string

7
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is completely canceled by the rearrangement of the λ-sea after digging holes. The spin carried
by this excitation is

S = 3

4
N − 1

4
N − N

∫
σ1(λ) dλ − 2

∫
σ2(λ) dλ = 0,

which means it is a spin singlet excitation or a spinon–antispinon pair excitation.

5. Conclusion

In summary, we construct an integrable ferrimagnetic spin chain model. The exact energy
spectrum is obtained by using the algebraic Bethe ansatz method. Unlike the other integrable
mixed spin chain model, our model has a ferrimagnetic ground state with a finite residual
magnetization. It is also found that the low-lying elementary excitations can be well described
by the usual spinons which carry a fractional spin-1/2. Using the standard thermodynamic
Bethe ansatz method [37–41], the finite temperature properties of the system can be obtained
directly.
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